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Shear dispersion along a rotating axle in a closely 
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A formula is derived for the longitudinal shear dispersion coefficient of a solute in a 
laminar flow along and around a rotating cylindrical axle in an off-centre closely 
fitting shaft. The rotation drives a circulation which augments diffusive mixing 
around the axle and reduces the eventual rate of longitudinal spreading. A simple 
approximation is shown to give accurate results for the important special case of a 
cylindrical shaft. 

1. Introduction 
When an axle is inserted into a long closely fitting shaft it will almost inevitably 

be off centre. When fluid is pumped along the remaining non-uniform gap (for 
lubrication or cleaning) the longitudinal velocity will have an exaggerated non 
uniformity (Snyder & Goldstein 1965). This has dramatic consequences for the 
longitudinal spreading of any solute or small particles carried by the flow. 
Sankarasubramanian & Gill (1971) give an example where the eventual longitudinal 
dispersion coefficient is 250 times that for a concentric annulus. 

In the context of bends in pipes, Erdogan & Chatwin (1967) and Johnson & Kamm 
(1986) have shown that centrifugally driven transverse flow augments the transverse 
mixing and can markedly reduce the eventual rate of longitudinal dispersion. The 
rotation of an axle in a stationary shaft will drive a transverse flow around the 
narrow gap. The purpose of the present work is to calculate the consequential 
reduction in the longitudinal dispersion coefficient, when the rotation is sufficiently 
slow that the solute is well-mixed across the gap. 

At  even higher rotation rates there can be homogenization round the azimuthal 
paths well before diffusion would be complete across the gap (Rhines & Young 1983; 
Pedley & Kamm 1988). Also, the helical flow can become unstable to annular Taylor 
vortices (Kaye & Elgar 1958). The present analysis does not extend to these rapid 
rotation regimes. 

2. Two-dimensional equations for narrow-gap flows 
When the solute (or small particles) first enters the annular gap, the mixing process 

is fully three-dimensional and comparatively inefficient (i.e. with molecular rates of 
diffusion). Then gradually there is mixing across the narrow gap between the axle 
and the shaft. So, the mixing process becomes two-dimensional with shear- 
augmented dispersion (Smith 1990). Further along the shaft the concentration 
becomes well-mixed around the axle and there is a dramatic growth in the effective 
rate of longitudinal dispersion (Muller & Bittleston 1991). Finally, the dispersion 
process is fully effective with longitudinal dispersion coefficient many orders of 
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magnitude greater than molecular rates of diffusion and can be modelled by a one- 
dimensional diffusion equation (Taylor 1953 ; Sankarasubramanian & Gill 1971). 
Although we are concerned with the final regime, the magnitude of the shear 
dispersion coefficient depends upon the two-dimensional structure of the flow and 
mixing. So our calculations begin in the two-dimensional regime. 

The flow geometry is illustrated in figure 1. We use cylindrical polar coordinates : 
0 measures the angle around the axle, and z measures the distance along the axle. The 
gap width h(0)  is assumed to be small relative to the mean radius a of the annular 
region, and we shall assume that the flow is well-mixed across the gap. If there is no 
z-variation in density, geometry or flow, then the two-dimensional equation for the 
conservation of mass is 

where v is the velocity component around the axle (averaged across the velocity 
profile in the gap). 

If the viscous drag a t  the boundaries is in local balance with the driving forces (i.e. 
steady flow with negligible advective flux of momentum around the axle), then for 
a laminar flow the momentum equations take the lubrication theory forms 
(Schlichting 1955, section 6c) : 

a,(hw) = 0, (2.1) 

1 

ap 
-sop = - V 

12 - (w - +@a), 
h2 

1 V 

P h2 
-azp = - 12-w. 

(2.2a) 

(2.2b) 

Here p(8 ,  z )  is the excess pressure (above hydrostatic), p the constant density, v the 
constant kinematic viscosity, Q the angular velocity of the axle rotation and w(0) the 
axial velocity (averaged across the gap). 

The two-dimensional shear dispersion equation is 

+ 6 a,( hD,, a, c )  + d,[h(K + D,, ) a, cl. (2.3 ) 

Here c is the solute concentration, K the constant molecular diffusivity, and D,,, D,, 
D,,, D,, are the components of the two-dimensional shear dispersion tensor. 
Important general properties of the dispersion tensor are the symmetry 

Do, = Dz, (2.4a) 

and the positive definiteness (Smith 1990, equation (5.4a)) 

D f  < DoOD,,. (2.4b) 

For laminar flow with a quadratic velocity profile in the gap Smith (1990, equation 
(7.2)) gives the explicit formulae 

h2w2 
(vz - wQa + 2Q2a2), Do, = D,, = - h2W ( w - $ ~ u ) ,  D,, =m. h2 

2 1OK 210K 
Doe = __ 

(2.5a-c) 

The numerical factors are simply the appropriate combinations of the dispersion 
coefficients for plane Poiseuille and plane Couette flow. 
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FIGURE 1. Sketch showing the non-uniform gap between a rotating axle and a stationary shaft. 

The timescale for mixing across the gap can be estimated as 

In this time the mean rotation speed &2a of the fluid in the gap will have carried 
material a distance of &2atgaP. This is less than the circumference 2xa (and thus the 
solute is well-mixed across the gap) if the angular velocity 52 satisfies the inequality 

52h2 
- < 4n3 
K 

For the momentum equations the corresponding inequality for the validity of 
lubrication theory involves v instead of K .  The absence of Taylor vortices (Kaye & 
Elgar 1958, section 6c) requires the stability condition 

So, unless h/a is large, the absence of Taylor vortices implies the appropriateness of 
lubrication theory. 

I n  some applications the gap width is not particularly small. For rotating liners in 
boreholes (Arceneaux & Smith 1986, table 2) the average outer to inner radius ratio 
is 1.5. Fortunately, if h(8) is interpreted suitably, then the coefficients in (2.1)-(2.5) 
are accurate to order (h/a)2.  If the radial positions of the inner and outer boundaries 
are 

r = a+N-), r = a+N+) (2.9a, b )  

then the appropriate definition for h(8) is 

(2.10) 

(Smith 1990, equation ( 3 . 6 ~ ) ) .  For concentric cylinders the quadratic correction in 
the formula (2.9) vanishes if we define a as the mean of the outer and inner radii. We 
remark that the analyses of Muller & Bittleston (1991) and of Sankarasubramanian 
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& Gill (1971) for the non-rotating case are applicable for gaps of arbitrary width. 
These authors use the outer radius as the reference length. So, care must be taken 
when comparing their numerical results with the analytic expressions derived in the 
present paper (see $8). 

3. Solutions for the flow around and along the narrow gap 
It is a straightforward application of lubrication theory (Reynolds 1886 ; 

Schlichting 1955, section 6c) to solve (2.1), (2.2u, b )  for the flow. Angle brackets will 
be used to denote 8- averages, e.g. 

1 2x 
( h )  = hd0. 

0 

Over bars denote cross-sectional average values, e.g. 

The mass conservation equation implies that the local velocity v(8) around the axle 
scales inversely as the local gap width: 

This relationship enables us to rewrite the transverse momentum equation ( 2 . 2 ~ )  : 

1 
a, P. - -- v(h) SZu 

h3 2h2 12apv (3.4) 

Periodicity of the excess pressure p upon going around the axle, enables us to solve 
(3.4) for the mean circulation velocity B: 

In particular, when the gap width does not vary with 8, then v has the constant value 
!$?a. For variable h(8) the resistance to the circulation is dominated by regions of 
small gap width (cf. Schlichting 1955, equation (6.20)). 

Since neither the velocity v(8) nor the gap width h(8) varies with z, it  follows from 
the transverse momentum equation ( 2 . 2 ~ )  that 

Hence, the pressure gradient azp in the longitudinal momentum equation (2.2b) does 
not vary with 0. Consequently, the local axial velocity w(8) is proportional to the 
square of the local gap width: 

a,a,p = 0. (3.6) 

w = hz( -). 12up (3.7) 

In terms of the mean axial velocity a, the solutions for w(8) and for a Z p  can be 
written 

(3.8u, b )  

When the gap width does not vary with 8, then w has the constant value a. In 
contrast to the transverse velocity (3.5), i t  is regions of wide gap that dominate the 
resistance to the axial flow. 
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4. Taylor limit 
As the solute travels along the axle, the longitudinal gradients of concentration 

become smaller (Muller & Bittleston 1991), and the mean advection velocity for the 
solute can be approximated more and more closely by the mean advection velocity 
GJ for the flow. The timescale on which mixing takes place around the circumference 
can be estimated as 

This is much longer than the time (2.6) for mixing across the gap. Indeed, in many 
circumstances there is insufficient time/length of shaft for there to be complete 
mixing around the axle (Long 1990; Muller & Bittleston 1991). The shear 
contribution D, to the mixing helps to reduce the mixing time. 

To focus our attention upon the even slower longitudinal dispersion, we introduce 
a small parameter 6, and we define a moving stretched coordinate system 

6 = 6(z-GJt), 7 = 6 2 t .  (4.2a, b) 

These scalings merely formalize the heuristic derivation given by Taylor (1953). The 
rescaled version of the two-dimensional shear dispersion equation (2.3) is 

1 6 
62 ha, +- ( h ) V a O  C + Sh(2U-m) a,C = ;~?as[h(K+D,) asC]  +a a~(hD, a& 

a 

6 
a 

+ -a<(hD,, a, C) + 6’ a@(K + Dzz) a, C]. (4.3) 

In  the Taylor limit (Taylor 1953), for which the rescaling (4.2a, b) is appropriate, 
the solute concentration becomes nearly well-mixed around the axle. So, we write the 
concentration as a small perturbation about C: 

c = C+SC’. (4.4) 

To leading order in 6 the equations satisfied by  and by c’ are 

1 
a 

( h )  a, c+ ac(h(w - m) c’)  = -ac(hD,,a8 c’) + (h(K + D z z ) )  8: c, ( 4 . 5 ~ )  

(4.56) 

The new features not present in the work of Taylor (1953, equation (19)) or of 
Sankarasubramanian & Gill (197 1, equation (30)) are the circulation velocity v and 
the off-diagonal shear dispersion D, = Dz8. 

1 1 
~ - a g C ‘ - - - a  [h(K+D,,)a,c’] = h(m-w) t~~s+-a,(hD,,) a,c. 

a a2 ’ a 

5. Longitudinal distortion of constant-concentration surfaces 
To emphasize the fact that  a t  leading order cf is proportional to a,c we write 

cf = - f(B)a,c with f= 0, (5.1) 

where f(0) satisfies the circumferential advection-diffusion equation 

1 1 
=-aof--L? (z a2 ’ [h(K+D,,)a,f] = h(W-?Z)--a,(hD,,). a (5.2) 
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Physically, the function f ( S )  can be interpreted as the longitudinal distortion of a 
constant-concentration surface. When the gap width h does not vary with 0, the 
right-hand side forcing in (5 .2)  vanishes, and f is identically zero. In terms off(6’) the 
longitudinal dispersion equation (4.5a) can be written 

(5-3) a, c = (K + D,, + (w - W)f- D,, a,fla) a! C. 

Equation (5.2) can be converted to constant-coefficient form by the change of 
angular coordinate 

with 

(5.4a) 

(5.4b) 

Here D can be interpreted as being the effective mean value of the circumferential 
shear dispersion Do,. The simplified equation satisfied by f ( @ )  is 

For later use we define the dimensionless parameter 

1 
/” = (h)(h- l )  

To take full advantage of the constant-coefficient left-hand side of (5.5), we pose 
Fourier series for the right-hand-side forcing : 

The Fourier coefficients can be defined by &integrals : 

h(w - W )  cos n@ do = 2(w - W )  cos n$, 

h(w - W )  sin nlC. do = 2(w - W )  sin n$, 

The corresponding Fourier series for f($) is 
W W 

f ( @ )  = x f~)(cosn@-cosn@)+ 2 f$)(sinn@-sinn@), 
12-1 n-1 

(5.7a) 

(5.7b) 

( 5 . 8 ~ )  

(5 .8b)  

( 5 . 8 ~ )  

(5.8d) 

(5.8e) 

(5.9a) 
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where 

(5.96) 

6. Shear dispersion coefficients 

longitudinal dispersion equation (5.3) : 

Here D,  is the effective average value of the longitudinal mixing associated with the 

From the Fourier representations for w-m, D ,  = Dzo, and f we can rewrite the 

a, F = (K+DL + E )  F (6.1) 

00 
shear across the gap: 

R, = Dzz-  1 - (d(,c'z+dp", 
2P(K+D) n=1 

and E is a longitudinal shear dispersion coefficient associated with shear around the 

The n2 factors in the denominator help to accelerate the convergence of this series 
for E .  

To be physically meaningful, a shear dispersion coefficient must be non-negative. 
All the terms in the summation (6.3) are positive, so E is strictly positive. However, 
the expression (6.2) for D, needs further investigation. From the Fourier series (5.7b) 
for Do,, we can rewrite D, : 

The positive definiteness (2.4b) ofthe shear dispersion tensor permits us to  show that 
the final term in (6.4) is non-negative. So, D ,  is indeed non-negative. It is a 
consequence of the residual non-uniformity of concentration around the axle, that 
the off-diagonal terms D,, = D,, modify the effective average value of the longitudinal 
mixing D,. 

Increasing either the mean circulation velocity B or the circumferential shear 
dispersion D reduces the value of each term in the series (6.3) for E .  We can use (3.5) 
and ( 2 . 5 ~ )  to estimate the dependence of and 6 upon the rotation rate Q. As Q 
increases we can identify three parameter regimes for the size of E depending upon 
which of K ,  Ba and D dominates: 

( 6 . 5 ~ )  

(6.5b) 

( 6 . 5 ~ )  
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Strictly, the estimate ( 6 . 5 ~ )  is invalid since in the high-rotation regime the condition 
(2.7) for mixing across the gap is violated. 

For zero rotation Sankarasubramanian & Gill (1971) emphasized that E vastly 
dominates D,. This dominance continues throughout the low-rotation regime ( 6 . 5 ~ ) .  
For the middle regime (6.5b) there is a transition of dominance 

IT K 
E N D ,  for am-- 

&) ' 

Finally, for rapid rotation E is negligible relative to  D ,  (though the precise estimate 
( 6 . 5 ~ )  is invalid). Hence, in those parameter regimes (6.5a, b)  for which E needs to be 
calculated, we can make the considerable simplification of neglecting both Do, and 
B, = Dz@. The simplified formula for E is 

Pedley & Kamm (1988, equation (4.3)) give an  equivalent formula with the 
additional complication of flow oscillations. 

For fluid-fluid displacement in an annular region (Long 1990), reduced 
longitudinal mixing implies a more efficient displacement process (so cleaning can be 
achieved with less fluid, or there is less residual contamination). Indeed, for boreholes 
it is becoming standard practice to rotate the cylindrical liner when displacing the 
fluid in the gap between the liner and the borehole wall (Lindsey & Durham 1984; 
Arceneaux & Smith 1986). The above formula (6.7) gives a quantitative basis for that 
practice. 

7. One-term approximation 
For zero axle rotation (6.7) becomes 

From the Fourier series ( 5 . 7 ~ )  for w-a we can replace the summation by a double 
integral : 

E(0)  = -I,, ( 7 . 2 ~ )  
a2m2 
K 

with (7.2b) 

The dimensionless integral I ,  depends only upon the shape of the non-uniform gap 
around the axle. 

For very rapid axle rotation (6.7) has the asymptote 

(7.3) 

Again, the Fourier series ( 5 . 7 ~ )  for w-rn enables us to replace the summation by an 
integral 

Krn2 
d E(v) - ----IT1 for large V, (7.4u) 

with (7.4b) 
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6 = ;n 

B = O  

e = ; r .  

FIGURE 2. An off-centre axle in a cylindrical shaft. 

As before, the dimensionless integral I ,  depends only upon the shape of non-uniform 
gap. 

A one-term approximation for E(g)  which interpolates between the limiting forms 
(7.2a), (7.4a) is 

with 

(7.5a) 

(7.5b) 

Here vR is reference value for the rotation velocity, beyond which the shear 
dispersion contribution E(v)  decreases rapidly. 

For arbitrary-shaped gaps h(B), it is a straightforward computational task to 
use the approximation (7.5a). First, we use (3.5) and (3.8a) to evaluate the mean 
transverse velocity c and the shape of the longitudinal velocity profile w(0)/m. Next, 
we evaluate the dimensionless integrals (7.2b), (7.4b). Finally, we evaluate E(0)  from 
(7.2a) and the rotation-modified shear dispersion coefficient from (7.5a, b). A test of 
the one-term approximation is given in the next section. 

8. Non-concentric cylinders 
As an illustrative example, we assume that the shaft is cylindrical with a nominal 

clearance H from the axle. If there is a displacement EH between the two centres, 
then the non-uniform gap width h(0) can be represented (see figure 2 ) :  

The angle 0 is measured around the axle from the region of narrowest gap. From (3.5) 
we can evaluate the mean circulation velocity 

h(B)=H(l--scos0), - 1  < E <  1. (8.1) 
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0.2 

0 2 4 6 8 10 

Axle rotation rate, 0 a 2 / K  

FIGURE 3. Comparison between the exact (-) and one-term approximation (----) to the non- 
dimensional shear dispersion coefficient E* for eccentric annuli with fractional offsets e = 0.1,0.3, 
0.5. 

and from ( 3 . 8 ~ )  we can determine the shape of the longitudinal velocity profile 

E 
-- I= -  ( - 2 cos 8 -$e+ e cos2 8). w 1 +b2 

For small eccentricity e the span of velocities increases with 6 ,  reaching a maximum 
a t  6 = 0.82. 

The parameter p defined in (5.6) has the value 

p = ( l - € Z ) f ,  (8.4) 

and the modified angular coordinate $ is given by the formula 

@ = 2 arctan [ (-1 l + €  3 tan $81. 
1 - €  

For a given value of 6 the Fourier coefficients W E )  can be evaluated numerically via 
the integrals ( 5 . 8 ~ ) .  The sine coefficients wt) are zero by symmetry. Finally, the 
summation (6.7) yields the axial velocity contribution E to  the longitudinal shear 
dispersion. The continuous curves in figure 3 show the non-dimensional dispersion 
coefficient 

as a function of the non-dimensional rotation rate 
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The one-term approximation described in the previous section has the advantage 
that all the calculations can be performed analytically : 

(8.8a) 

(8.8b) 

We remark that I ,  has a maximum value 0.23 at e = 0.6. The dotted curves in 
figure 3 show the efficacy of the one-term approximation (7.5a, b) .  

If Do, = D,, is negligible, then from ( 2 . 5 ~ )  we can evaluate the non-dimensional 
counterpart to D, : 

2(1+y€2+ye4+g€6) .  
1 2 

0:: =D; = (:) 
210(1+3€ ) 

Sankarasubramanian & Gill (1971, figure 5) give numerical results for the non- 
dimensional shear dispersion coefficient for flow between stationary cylinders with a 
radius ratio 1.5. These results enable us to test the accuracy of the narrow-gap 
approximation. As noted in $2, we select our reference radius a to  be the mean value 
of the outer and inner radii. So, the radii are 1.%, 0.8a with a nominal gap width 
H = 0 . 4 ~  (as sketched in figures 1 and 2). When rescaled relative to a (rather than 
the outer radius) the results given by Sankarasubramanian & Gill (1971, figure 5) 
become 

Dr+E* = 8.155 x 0.01917, 0.2055 (8.10) 

for eccentricities (fractional offsets) e = 0, 0.1,0.5. The narrow-gap formulae (8.8a), 
(8.9) yield the predictions 

D t + E *  = 7.619 x 0.02004, 0.2247. (8.11) 

So, the narrow-gap formulae are correct to within 10 %, even though the gap is not 
very narrow. 

Sankarasubramanian 6 Gill (1971) draw attention to the dramatic, nearly 25-fold 
increase in the longitudinal dispersion coefficient which occurs when the fractional 
offset is increased from e = 0 to e = 0.1, even though the eccentricity is barely 
perceptible by eye. The explicit formulae (8.8b),  (8.9) reveal that 

2 E* 
- - 420e2 (g) for small 8 .  
02 (8.12) 

So, for narrower gaps the role of eccentricity is even more dominant. I n  the case 
e = 0.5, H = 0 . 4 ~  the shear dispersion coefficient is over 250 times that for the 
concentric case, and the ratio would be even more extreme if the gap were narrower. 

I wish to thank Susan Muller, Simon Bittleston and Peter Long for showing me 
their work prior to publication and for helpful discussions. This work was funded by 
the Royal Society. 
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